Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data.

نویسندگان

  • Jun Li
  • Robert Tibshirani
چکیده

We discuss the identification of features that are associated with an outcome in RNA-Sequencing (RNA-Seq) and other sequencing-based comparative genomic experiments. RNA-Seq data takes the form of counts, so models based on the normal distribution are generally unsuitable. The problem is especially challenging because different sequencing experiments may generate quite different total numbers of reads, or 'sequencing depths'. Existing methods for this problem are based on Poisson or negative binomial models: they are useful but can be heavily influenced by 'outliers' in the data. We introduce a simple, non-parametric method with resampling to account for the different sequencing depths. The new method is more robust than parametric methods. It can be applied to data with quantitative, survival, two-class or multiple-class outcomes. We compare our proposed method to Poisson and negative binomial-based methods in simulated and real data sets, and find that our method discovers more consistent patterns than competing methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using RNA-seq Data to Detect Differentially Expressed Genes

RNA-sequencing (RNA-seq) technology has become a major choice in detecting differentially expressed genes across different biological conditions. Although microarray technology is used for the same purpose, statistical methods available for identifying differential expression for microarray data are generally not readily applicable to the analysis of RNA-seq data, as RNA-seq data comprise discr...

متن کامل

Enhanced Probability Plots for Identifying Differential Gene Expression and Methylation Patterns in Breast Cancer Cell Lines via RNA-Seq and MethylC-Seq

Next generation DNA sequencing (NGS) is poised to replace microarray as the primary technology for research in genomics, epigenomics and transcriptomics in the near future. Two NGSbased methods RNA-Seq and MethylC-Seq provide researchers with unprecedented power to map and quantify genome-wide gene expression levels and DNA methylation patterns. In this study, we adopt a simple model-based grap...

متن کامل

Regulatory effects of cis- and trans-LncRNAs on differential expression of genes following infection with viral hemorrhagic septicemia virus in rainbow trout (Oncorhynchus mykiss)

In this study the cis and trans regulatory effect of long non-coding genes (lncRNA) on the expression of genes in fish infected by Viral hemorrhagic septicemia virus (VHS) was investigated using RNA-seq technology. At the end of experimental period (the thirty fifth day), total RNA was extracted from spleen tissue (group treated with virus) and physiological serum (control group) was used to pr...

متن کامل

Investigating the Function of Predicted Proteins from RNA-Seq Data in Holstein and Cholistani Cattle Breeds

This study was performed to determine the digital expression profile of different genes expressed in Holstein and Cholistani breeds as well as to evaluate the performance of predicted proteins derived from differentially expressed genes between these two breeds using RNA-Seq data. For this purpose, the whole mRNA sequence for a blood sample of American Holstein and Pakistani Cholistani cattle p...

متن کامل

Differential expression in RNA-seq: a matter of depth.

Next-generation sequencing (NGS) technologies are revolutionizing genome research, and in particular, their application to transcriptomics (RNA-seq) is increasingly being used for gene expression profiling as a replacement for microarrays. However, the properties of RNA-seq data have not been yet fully established, and additional research is needed for understanding how these data respond to di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistical methods in medical research

دوره 22 5  شماره 

صفحات  -

تاریخ انتشار 2013